
A Mediated Architecture for Multi-Agent

Systems

Gordon Streeter

Sentar

4900 University Square, Suite 8

Huntsville, Alabama 35816

Andrew Potter

Sentar

4900 University Square, Suite 8

Huntsville, Alabama 35816

Tony Flores

Sentar

4900 University Square, Suite 8

Huntsville, Alabama 35816

Abstract:

The technical obstacles to development of the Knowledge Web are formidable. A solution to this problem will include an

intelligent agent technology capable of serving limited collections of information resources. It will also provide a scalable

infrastructure wherein agents can perform effectively. The prototype architecture uses intelligent software agents to locate

relevant knowledge elements and synthesize those elements to produce a usable solution. Individual agents are implemented

using knowledge agent shells. These shells are reusable entities tailored to manage specific kinds of information, such as

databases, models, and expert systems. Agents utilize managed ontologies and perform knowledge-based reasoning to

service information requests. Requests are submitted to the agents via the services of a higher-level entity known as a meta-

agent. Meta-agents provide administrative oversight of the problem-solving process, marshalling resources and driving agent

interaction towards a solution. The Knowledge Web thus combines centralized ontology-driven agent mediation with

decentralized knowledge operations. This combination provides a flexible infrastructure capable of exploiting a variety of

distributed knowledge sources while serving a heterogeneous and dynamic user population.

Keywords:

conceptual graphs

diagnosis

knowledge representation

multi-agent systems

ontologies

A Mediated Architecture for Multi-Agent Systems

Abstract:

The technical obstacles to development of the Knowledge

Web are formidable. A solution to this problem will include

an intelligent agent technology capable of serving limited

collections of information resources. It will also provide a

scalable infrastructure wherein agents can perform

effectively. The prototype architecture uses intelligent

software agents to locate relevant knowledge elements and

synthesize those elements to produce a usable solution.

Individual agents are implemented using knowledge agent

shells. These shells are reusable entities tailored to manage

specific kinds of information, such as databases, models,

and expert systems. Agents utilize managed ontologies and

perform knowledge-based reasoning to service information

requests. Requests are submitted to the agents via the

services of a higher-level entity known as a meta-agent.

Meta-agents provide administrative oversight of the

problem-solving process, marshalling resources and driving

agent interaction towards a solution. The Knowledge Web

thus combines centralized ontology-driven agent mediation

with decentralized knowledge operations. This combination

provides a flexible infrastructure capable of exploiting a

variety of distributed knowledge sources while serving a

heterogeneous and dynamic user population.

1 Introduction

The vision of a World Wide Web orchestrated by a network

of autonomous agents, conspiring to bring order out of

chaos, providing the user with precisely the information

needed, precisely when it is needed, is an alluring but

elusive promise. Technical obstacles to realizing this vision

include the unrestricted growth of the Web, the profusion of

unmanaged content, and the bewildering variety of rapidly

evolving technologies. Although we can imagine

harnessing the capabilities of a few web sites, scaling this

vision upwards to address the full magnitude of the problem

suggests an unmanageable proliferation of autonomous

agents. Any solution to this problem will have both an

intelligent agent technology that can serve limited

collections of information resources, and scalable

infrastructure wherein these agents can perform effectively.

This is the basis of our approach to the design of the

Knowledge Web, as presented in this paper. This

Knowledge Web, called the KnoWeb, uses intelligent

software agents to locate relevant knowledge elements and

synthesize them to produce a usable information resource.

Individual agents are implemented using knowledge agent

shells. These shells are reusable entities tailored to manage

specific kinds of information, such as databases, models,

and expert systems. Agents utilize managed ontologies and

perform knowledge-based reasoning to service information

requests. Requests are submitted to the agents via the

services of a higher-level entity known as a meta-agent.

Meta-agents provide administrative oversight of the

problem-solving process, marshalling resources and driving

agent interaction towards a solution. The Knowledge Web

thus combines centralized ontology-driven agent mediation

with decentralized knowledge operations. This combination

provides a flexible infrastructure capable of exploiting a

variety of distributed knowledge sources while serving a

heterogeneous and dynamic user population.

2 Shared Knowledge Representation

We use conceptual graphs for both ontology and knowledge

representation. A benefit of this is that knowledge and its

corresponding ontology are conceptually isomorphic. To

support programmatic transmission and manipulation, these

graphs are implemented in XML, but may also be rendered

in KL0, a notation we have developed that is similar to the

conceptual graph linear form of representation [Sowa,

2000]. Figure 1 shows an example of this bi-level

representation.

Figure 1 - Bi-level Knowledge Representation

All knowledge expressions are conformant to an XML DTD

that provides a mechanism for describing conceptual graphs.

Each agent’s knowledge module uses an ontology.

Ontologies are constructed of three sections:

• Logical, including primitives such as proposition,

negation, and disjunction.

• Task, consisting of general concepts such as cause,

symptom, and diagnosis

• Domain, consisting of factual and heuristic

knowledge of the subject specialization

Although our current work is based on a diagnostic

paradigm, other paradigms are presumably possible.

Providing a common syntax for all knowledge

representation enables meta-agents to manipulate domain

content without requiring visibility into content. Since

expressions are ontologically constrained, meta-agents can

collect knowledge from a variety of sources and perform

knowledge operations on them while limiting domain

dependency.

3 Agent Technology

Not all agents are equal. Some are specialists, focusing on a

narrow domain. Others are generalists, capable of

synthesizing information from a variety of specialized

sources. Still others possess knowledge of other agents.

Each kind of agent brings unique and essential capabilities

to the Web:

• Knowledge agents have capabilities within a

subject specialization.

• Domain Advisor Agents support meta-agents,

working as knowledge advisors. Met-agents use

advisor agents to help plan knowledge transactions,

manage conflict resolutions, and direct activities

toward an attainable objective.

• Service Agents provide an agent capability

brokerage. A Service Agent matches requests with

capabilities.

• User Agents specialize in communication with a

user.

• Meta-agents perform agent mediation during

knowledge transactions, marshalling resources and

managing agent interaction.

More detail on each agent is provided later in this paper.

Figure 2 shows an example of how these agents interrelate.

Figure 2 - Multi-Agent Knowledge Web Architecture

3.1 Knowledge Agents

Knowledge agents focus their capabilities within a

specialized domain. Each agent publishes its capabilities by

registering with a service agent.

Knowledge agents are implemented using a reusable

symbolic logic shell. This shell, shown in Figure 3, has the

ability to initialize the underlying logic engine and the agent

communication subsystem, and performs translation on

requests and responses. The symbolic encoding used by the

logic engine is defined by the internal processing

requirements of the particular engine.

Figure 3 - Symbolic Logic Agent Shell Functional Components

The symbolic logic shell supports migration of legacy

resources to the Knowledge Web architecture. It has been

A
g

e
n

t
C

o
m

m
u

n
ic

a
ti

o
n

Request

Agent Wrapper

Logic Engine

Agent Application

Response

A
g

e
n

t
C

o
m

m
u

n
ic

a
ti

o
n

Request

Agent Wrapper

Logic Engine

Agent Application

Response

Knowledge
Agent

Knowledge
Agent

Knowledge
Agent

Domain
Advisor

Meta-
Agent

User
Agent

User
Interface

Service
Agent

Registry Ontology

Ontology

Ontology

Knowledge
Agent

Knowledge
Agent

Knowledge
Agent

Domain
Advisor

Meta-
Agent

User
Agent

User
Interface

Service
Agent

Registry Ontology

Ontology

Ontology

Ontology

Ontology

Ontology

adapted to support several resource types. We have used it

to create a FAQ agent, a service agent, and an advisor agent.

3.2 Domain Advisor Agents

Advisor Agents are knowledge agents that provide domain

dependent support to meta-agents, working as application

knowledge advisors. Our current implementation is an

expert system agent using the symbolic logic agent shell.

When an advisor agent accepts an inquiry from a meta-

agent, it first checks its knowledge context for an answer. If

the answer is available, it sends it to the meta-agent. If no

response is readily available, the advisor forms its own

inquiry and attempts to develop an answer by drawing upon

its internal knowledge resources as well as those of other

agents.

3.3 Service Agents

Service agents manage the published capabilities of

specialist agents. When presented with a request, the meta-

agent calls upon the service agent to identify the appropriate

destination agents for the request. The destination agent will

usually be a knowledge agent, representing a unique domain

specialization. The meta-agent dispatches the question to

the destination knowledge agent. In the process of creating

a response, the knowledge agent may need to post queries of

its own to the system. The meta-agent again uses the

service agent to find a suitable destination agent and

dispatches the question accordingly.

3.4 User Agents

User agents are knowledge resources for user interfaces, and

they are intermediaries between meta-agents and users. The

user agent accepts questions from the user. Before

forwarding them to the meta-agent, it ensures that they are

ontologically well formed and potentially answerable.

Responses received from the meta-agent are rendered from

KL0 to presentation format for the user.

3.5 Meta-Agents

The task of a meta-agent is to enlist and mediate between

knowledge agents as necessary to achieve a goal. By

providing administrative oversight to multi-agent

operations, the meta-agent performs high-level reasoning, or

reasoning about the reasoning capabilities of others. The

meta-agent orchestrates the activities of other agents,

exploiting their individual capabilities and ensuring the

integrity of their responses.

When a meta-agent initiates a knowledge transaction, it

consults a service agent for the identity of useful knowledge

agents. During the course of the transaction, additional

agents are called into play as needed. Alliances are created

as needed and just as quickly discarded. There is no static,

fixed architecture. There are only the opportunistic

relationships in use at any given moment during a

knowledge transaction.

The meta-agent uses an agenda to keep track of what it is

doing and why. Broadly taken, this would include the

entirety of the meta-agent code, but the more significant

agenda elements include:

• Goal. Representing an inquiry under consideration,

the goal is the highest-level structure of the agenda.

• Context. A collection of propositions asserted

along a particular path through an agenda

• Prospect. Each registry entry applicable to a goal

is represented by a prospect.

• Evocation. An evocation is a record of a request

sent to a Knowledge Agent and all processing that

arises from this transaction.

• Postulate. The agenda equivalent of a proposition,

the postulate includes the proposition and

information as to its origin.

When the meta-agent opens a new context, its first

activity is to identify a domain advisor and form an

alliance with it. A domain advisor is an agent claiming

the ability to provide assistance in the domain-specific

aspects of problem solving. The meta-agent identifies

the domain advisor by asking the service agent which

agent, if any, it should use. By handling this step as an

inquiry, the meta-agent is able to avail itself of the same

agenda management, service agent look-up, and

conflict resolution services that are provided as a matter

of course in any inquiry.

The meta-agent then performs marshalling activities to

identify and distill the list of knowledge agents to be

consulted. Marshalling consists of identifying and

selecting applicable registry entries. This is

accomplished using the following processes:

• Identify. The meta-agent interacts with the

Service Agent to identify the registry entries of

Knowledge Agents that may have application

to the task at hand.

• Preclude. The meta-agent discards any

registry entries with preconditions that

contradict the context. This is accomplished

with assistance from the domain advisor.

• Consider. The meta-agent evaluates any

preconditions associated with the remaining

registry entries. It does this by creating

inquiries for each precondition and submitting

these inquiries to itself.

• Exclude. After each precondition is

considered, further conflict resolution must be

performed. The meta-agent excludes all entries

whose precondition is contradictory to the

context. This is accomplished with assistance

from the domain advisor.

Once marshaling is complete, the meta-agent dispatches

the inquiry to the identified agents and waits for these

agents to reply. If the condition of any inquiry yields

more than on value, a separate branch must be created

for each value. Each alternative is addressed

independently. Conceptually, this is accomplished by

branching the agenda and providing each branch with a

separate copy of the context. During the interval

between request and the response, any of the marshaled

agents may submit new inquiries which must be

processed before the evaluation is complete.

Once all solutions are received, the Meta-agent reduces

the solution set to unique solutions by arbitrarily

discarding duplicate entries. If a domain advisor is

available for the context, it is given the opportunity to

discard solutions for some domain-dependent reason.

The Meta-agent has no concept of truth. What agents

wish to assert, the Meta-agent accepts as postulate. This

nature of speculative credulity leaves the Meta-agent

open to contradiction, and though cavalier with truth, it

is a stickler for consistency. The Meta-agent tries first

to prevent contradiction, and then to resolve it, but it is

prepared, finally, to handle it with a blind

meticulousness. As the Meta-agent is unaware of the

real impact of and contradiction, it must isolate each

contradictory postulate in its own copy of the context,

protecting the consequence of any one from the

influence of any other. Each such postulate is called the

“antecedent” of the precedence. Likewise, while in

other systems this situation might be characterized as

“uncertainty” and be dealt with in terms of “possibility”

or “probability”, to the Meta-agent these separate lines

of inference are simply “alternatives”.

The Meta-agent concurrently processes multiple

requests and reentrantly processes requests that arise

within the context of other requests. Its implementation

is event-based. Incoming messages are events.

4 Conclusion

KnoWeb technology provides the means for managing

the Knowledge Web, while permitting it to thrive as a

vast collection of autonomous resources. Whereas the

populist nature of the Web as we now know it seems

resolutely anti-architectural, the mediated architecture

described here not merely overcomes this impediment,

but draws upon it as a positive feature.

Service agents provide the means for agents to

publicize their capabilities, and Meta-agents, with

assistance from Advisor Agents, provide the

mechanism for managing diverse resources, resolving

conflicts, and synthesizing responses. By adhering to a

consistent knowledge representation scheme based on

an industry standard mark-up language, the KnoWeb

provides a common language that may be understood

and transmitted by diverse agents. Provision of the

symbolic logic agent shell supports adoption of legacy

web resources into the architecture.

Future iterations of the prototype call for development

of enhanced explanation capabilities and an intelligent

user interface. A prototype knowledge builder is

currently under development. This will enable creation

of larger knowledge modules, which will support

further testing and demonstration.

References

 [Sowa, 2000] John F. Sowa, Knowledge

Representation; Logical, Philosophical, and

Computational Foundation, Brooks/Cole, Pacific

Grove, California 2000

