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Abstract. The Knowledge Agent Mediation Language (KNAML) is designed 
for use in multi-agent reasoning systems.  Like conceptual graphs, KNAML 
represents knowledge using concepts, relations, and graphs.  Concepts and 
relations are linked to form graphs, and graphs may be nested within other 
graphs.  Additional constructs are used to support distributed reasoning and 
ontological concision.  KNAML treats ontologies as knowledge domains that 
happen to be of the ontology domain. It uses an ontology of ontologies to 
define the concept and relation types available in an ontology.  KNAML 
knowledge resources are modular to facilitate rapid development and efficient 
inter-agent processing.  KNAML supports ontological specification of an 
extensible set of knowledge modalities, such as workflows, decision trees, 
and graphs that reflect the processing specializations of various knowledge 
agents and supports multi-modal knowledge authoring.  Implemented in Java, 
KNAML supports subsumption, unification, and binding operations required 
by the host multi-agent system to carry out knowledge discovery and 
synthesis. 

1 Introduction 

Multi-agent systems that perform distributed reasoning pose distinct challenges for 
knowledge representation languages.  Because the agents share a distributed knowledge 
corpus, the language must support explicit ontologies.  To facilitate agent diversity, these 
ontologies should define, in addition to domain conceptualizations, various structural 
features of the language as well.  Because contributions to multi-agent systems may come 
from a variety of organizations, the resources used to implement the language should use 
widely accepted technologies.  Reliance on esoteric programming languages should be 
avoided.  Even so, the knowledge representation language must readily support advanced 
reasoning capabilities, such as subsumption, unification, and binding.  As with monolithic 
knowledge systems, the language should also support human readability and 
understandability.  Finally, the knowledge representation language should support agent 
interoperability through the use of standard network transmission and data storage. 

The Knowledge Agent Mediation Language (KNAML) is designed specifically for 
use in multi-agent reasoning systems.  As with conceptual graphs [1], KNAML 
represents knowledge using concepts, relations, and graphs.  Concepts and relations may 
be linked together to form graphs, and graphs may be nested within other graphs or 



concepts.  Additional constructs, including concept frames and arc labels, are provided to 
support distributed reasoning and ontological concision.  Frames are used to implement 
relational instantiation, which enables the system to provide discrete handling for factual 
assertions.  Arc labels are syntactic helpers used to facilitate non-ambiguous mapping 
between ontological structures and knowledge content. 

KNAML supports knowledge capture and agent specialization by implementing an 
extensible set of knowledge modalities, such as workflows, rules, decision trees, and 
graphs.  This is accomplished by using an ontological specification for each modality.  
Each modality is accompanied by a corresponding editor that enables the user to create 
integrated knowledge projects, consisting of a set of multi-modal knowledge modules 
defined to address an anticipated range of problems using a multi-agent architecture.  At 
the storage and transmission level, KNAML is represented as XML.  KNAML is being 
used in a variety of applications now under development.  Editors for workflows and 
graphs are now in use, and additional editors are in development. 

This paper describes KNAML and its use in the KnoWeb® multi-agent architecture.  
The KnoWeb architecture uses mediated reasoning to integrate a variety of agent 
capabilities.  These include knowledge bases, databases, UML workflows, and sensors.  
The Java implementation of KNAML supports subsumption, unification, and binding.  
The result is a simple but highly expressive language for representing knowledge for 
performing automated reasoning in a distributed environment. 

2 Background: a Multi-Agent Architecture 

KnoWeb is a multi-agent system architecture that uses mediated reasoning to perform 
dynamic decision-making [2].  KnoWeb employs a small group of core agents to 
implement its reasoning model, and engages a loosely coupled confederation of specialist 
agents to carry out goal-driven and event-driven tasks.  The core agents consist of a Meta 
Agent, a service agent, and one or more domain advisors.  The Meta Agent provides 
domain-neutral mediation and conflict resolution.    In its role as mediator, the Meta 
Agent enlists other agents to satisfy goals presented by a requesting agent.  It takes care of 
inter-agent coordination and planning needed to reach a goal.  By concentrating reusable 
intelligence in this central resource, redundant complexity in specialist agents is reduced.   
The service agent maintains a registry of agent capabilities used to provide brokerage 
services.  The service agent is functionally similar to matchmaking agents described in 
[3], however, in KnoWeb agents typically are both information providers and requesters, 
resulting in agent interaction that may be intensively cooperative.  The domain advisor 
provides conflict resolution and planning strategies used by the Meta Agent.  Agents 
communicate using the Knowledge Agent Mediation Language (KNAML) developed by 
Sentar. 

KnoWeb mediated reasoning is implemented in Java.  The Java implementation of 
KNAML supports subsumption, unification, and binding.  Subsumption uses existential 
conjunctive logic to establish the truth value of one graph based on the known value of 
another.  Graph and sub-graph unification supports discovery by indicating how one 
graph is subsumed by another.  Binding is used for joining graphs to produce knowledge 



synthesis.  The binding operation also supports backtracking.  This is necessary to assure 
that graphs are recoverable in the event of binding failure.   

The reasoning process used by the Meta Agent is straightforward.  Throughout the 
process, the Meta Agent uses an agenda to keep track of what it is doing and why, and it 
maintains a context of asserted propositions.  The process consists of several phases: 
initiation, alliance, marshalling, resolution, and response.  The process begins when an 
agent initiates a request. The agent does so by sending the request to the Meta Agent.  
When the Meta Agent accepts a request, it first checks to see if the answer is already in 
the context or if the request is already in its agenda.  If the answer is already in the 
context, the Meta Agent uses it to generate a response.  Otherwise, it proceeds with 
problem solving. 

In the alliance phase, the Meta Agent selects a relevant domain advisor for use in 
planning and conflict resolution.  This alliance is sometimes necessary because the Meta 
Agent is domain neutral, and both planning and conflict resolution involve domain 
specific considerations.  Typically, the domain agent is an expert system constructed 
specifically for a problem domain. 

Following the alliance phase, the Meta Agent performs marshalling.  Marshalling 
consists in identifying the agents to enlist in handling the request.  Registered capability 
and ontological consistency are among the criteria.  Also as part of marshalling, the Meta 
Agent negotiates with the domain advisor to determine whether any agents should be 
excluded from request processing.  This affords the domain advisor an opportunity to 
eliminate extraneous branches from the agenda before it is executed by the Meta Agent.  
An agent’s registered capabilities may include preconditions that must be resolved as part 
of request processing.  These preconditions may require the Meta Agent to spawn 
additional requests, so the Meta Agent must be able to maintain recursive contexts.   

Upon completion of marshalling, the Meta Agent dispatches the request to the 
enlisted agents.  These agents, if they choose to handle the request, attempt to instantiate 
it, and return their results to the Meta Agent.  The agents may initiate nested requests as 
needed, and the Meta Agent will invoke the reasoning process for each of these requests.     

In the resolve phase, the Meta Agent discards duplicate responses and passes the 
remaining responses to the domain advisor for evaluation.  The domain advisor may 
discard additional responses.  The domain advisor may also initiate further nested 
requests which must be serviced prior to resolution of the original request.  The remaining 
responses are asserted into the context and the solution is dispatched to the agent that 
initiated the request. 

Note that elsewhere in the literature the term “Meta Agent” is used to refer to an 
agent that reasons about other agents [4] or as an agent that aggregates other agents [5].  
Although this latter definition might have some functional applicability here, to the extent 
that multiple Meta Agents could operate among intersecting or complementary agent 
clusters, no other architectural support for this concept seems necessary.  And for 
reasoning about other agents, no particular kind of agent is required.  What would be 
required are appropriate knowledge resources and some stock of problems to consider. 



3 Knowledge Agent Mediation Language 

KNAML is based on conceptual graphs, as defined by Sowa [1].  In KNAML, knowledge 
is represented using concepts, relations, and graphs.  Concepts and relations may be 
linked together to form graphs, and graphs may be nested within other graphs. 
Ontological support is built into the language.  The result is a simple but expressive 
language for the representation of complex knowledge. 

A concept may represent any entity.  Concepts have a type and a referent.  The type 
is the ontological category to which instances of the concept belong.  The referent denotes 
a specific instance or set of instances of a concept.  The following graph contains a single 
concept. The concept type is Person and the referent is #Bob: 

[ 
     [Person:#Bob] 
] 

In the above example, the type of concept referent used is called an indexical.  
Indexicals are always preceded by the “#” sign, e.g. #Bob.  Indexicals may be used to 
designate individual concepts.  KNAML supports two other kinds of referents.  These are 
string literals and descriptors.  String literals are represented using character strings 
enclosed in quotes.  Descriptors are graphs.  These are used frequently in KNAML.  In 
the following example, the referent of the concept type Proposition is a descriptor.  
As shown, descriptors can be nested: 

[ 
     [Proposition:[ 
          (Believes) 
               +-believer-->[Person:#Jack] 
               +-belief-->[Proposition:[ 
                    (GoingTo) 
                         +-traveler-->[Person:#Bob] 
                         +-destination-->[City:#Boston] 
               ]] 
     ]] 
] 

Frames are implemented using relations, with arcs for each slot.  Frames are used for 
relational instantiation.  This makes it possible for the system to distinguish one otherwise 
identical instance of a relation from another.  If there are multiple assertions, for example, 
that “Bob is going to Boston,” possibly received from differing agents or from the same 
agent at different times, relational instantiation permits the system to uniquely identify 
each trip.  Further, frames provide a convenient way to specify properties for each 
instance, such as time and date or mode of transportation.  So, if the ontology for concept 
type Person specifies associations with concepts of type Address, City, 
State, and Zip, the association can be defined like this: 

 
 

[Person: #Bob [ 
     (PersonalDetails) 



          +-name-->[Name: "Robert McNamara"] 
          +-address-->[Address: "1000 Defense Pentagon"] 
          +-city-->[City: "Washington"] 
          +-state-->[State: "DC"] 
          +-zip-->[Zip: "20301"] 
]] 

Relations are used to define relationships among concepts.  Each relation has a type 
and a collection of arcs.   The arcs are used to define the linkage between a relation and its 
concepts.  Arcs are labeled.  The labels are determined in the ontological definition of the 
relation.  Each arc terminates in a concept.  The types of each of these concepts are also 
specified ontologically.    

Here, the relation GoingTo has two arcs, one labeled traveler and the other 
destination.  The traveler arc terminates on a concept of the Type Person, 
with referent of #Bob.  The destination arc terminates on a concept of type destination, 
with a referent of #Boston.  

[Proposition:[ 
     (GoingTo) 
          +-traveler-->[Person:#Bob] 
          +-destination-->[City:#Boston] 
]] 
Suppose that several people are going to Boston.  One way to express this would be 
to create several graphs, one for each traveler.  Another would be to define the 
ontology to permit the use of a plural.  A plural is a special concept in which all the 
elements are of a specified type: 

[ 
   [Proposition: [ 
       (GoingTo) 
            +-travelers-->[Person: { #Bob, #Carol, #Ted,      
                                     #Alice }] 
               +-place-->[City: #Boston] 
   ]] 
] 
A graph is a container for concepts, relations, and other graphs.  A graph is 
represented by a matching set of square braces.  Here is a graph containing a 
relation and its ontologically specified set of concepts: 

[ 
    (GoingTo) 
        +-traveler-->[Person:#Tex] 
        +-destination-->[City:#Madison] 
] 



4 Ontology 

As previously suggested, ontology is central to KNAML.  Use of an explicit ontology 
enforces consistency within a knowledge module, and more importantly for multi-agent 
systems, ontology makes it possible for agents to share knowledge.  An ontology is a 
specification of the concepts comprising a domain and the interrelationships that may 
hold between these concepts.  We treat an ontology as a knowledge module whose 
domain happens to be an ontology.  To author such an ontology, an ontology-ontology is 
required. 

An Ontology consists of an ontology name and a collection of concept and 
relation types.  The name is a concept of type TypeName, and the concept and relation 
types are of ConceptType and RelationType respectively: 

[Ontology:[ 
     (OntologyFrame) 
          +-aName-->[TypeName:] 
          +-someConceptTypes-->[ConceptType:{*}] 
          +-someRelationTypes-->[RelationType:{*}] 
]] 

A concept type is a concept of type ConceptType.  To define a concept type, the 
ConceptType concept type is used.  The ConceptType has two parts, a type name 
and a type.  The name is a concept of type TypeName, and the type is ontologically 
unspecified and could be anything.  By convention, the type must be a relation type, an 
enumeration, a primitive, or nothing at all. 
[ConceptType:[ 
     (ConceptTypeFrame) 
          +-aName-->[TypeName:] 
          +-aType-->[] 
]] 

A relation type is a concept of type RelationType.  A relation type specification 
consists of a name and a collection of arc types.  The name is a concept of type 
TypeName.  The arcs are concepts of type ArcType. 

[RelationType:[ 
     (RelationTypeFrame) 
          +-aName-->[TypeName:] 
          +-someArcTypes-->[ArcType:{*}] 
]] 

An arc type is a concept of type ArcType.  The specification of an arc type consists 
of a label, an arc terminus, and a plural indicator.  The label is a concept of type 
TypeName.  The terminus is a concept of type ConceptType.  The plural indicator is 
a concept of type Boolean. 

 
 

[ArcType:[ 
     (ArcTypeFrame) 
          +-aLabel-->[TypeName:] 



          +-aTerminus-->[ConceptType:] 
          +-aPluralIndicator-->[Boolean:] 
]] 

There are several primitive types used to provide the ontological foundation.  These 
include TypeName, Boolean, and Enumeration.   A concept of type 
TypeName is a string, a concept of type Boolean may be either true or false, and a 
concept of type Enumeration may be used to define a specific set of values that may 
be applied to a concept. 

Using the ontology-ontology, it becomes possible to treat an ontology as a 
knowledge module.  This means new ontologies can be authored using the same tools 
used to create other knowledge modules, and further, it is possible for a knowledge agent 
to reason about ontologies just as they do about other domains.  We anticipate being able 
to apply this approach to ontology reusability problems. 

5 Knowledge Modalities 

In a multi-agent system, agent specializations may occur along lines of knowledge 
domains.  For example, one agent might specialize in some area of product diagnostics, 
and another could specialize in customer service.  The two agents combined would be 
useful in creating a product support application.  However, there is another form of 
specialization, one which occurs along lines of knowledge modalities.  That is to say, the 
agents specialize in their forms of knowledge representation.  Some problems are best 
solved by using rules, others by using decision trees, and still others respond well to 
workflows.  The possibilities are unlimited.  A single form of knowledge representation, 
no matter how powerful, is insufficient.  Using the wrong representation leads to poor 
design, difficult knowledge authoring, and poor system performance.   

KNAML supports an extensible set of modalities, such as workflows, rules, decision 
trees, and graphs.  This is accomplished by using KNAML ontological support to create 
ontologies for specialized modalities.  Each modality is accompanied by a corresponding 
editor that enables the user to create integrated knowledge projects, consisting of a set of 
multi-modal knowledge modules defined to address a predefined range of problems using 
a multi-agent architecture. 

For example, the workflow modality allows knowledge to be authored, expressed, 
and processed as workflows, using workflow symbology.   The workflow agent 
implements UML activity diagrams, including actions, forks, merges, branches, joins, 
and transitions.  Workflow activities and transition guards include goals, which are 
expressed as KNAML graphs.  At runtime, these goals are evaluated—using the Meta 
Agent reasoning process where appropriate—and the results are used to determine the 
path taken by the workflow.  That multi-agent systems would benefit from a well-defined 
agent interaction protocol is clear [6].  The workflow agent orchestrates the behavior of 
the multi-agent system, and it does so in an architecturally neutral manner.  A workflow 
is a tactical plan for solving a problem.  By specifying the steps required to solve the 
problem, the order in which they are to be taken, and the conditions under which they will 
be invoked, the workflow provides a coherent approach to agent cooperation.  Because all 
activities performed by other agents (possibly including other workflow agents) are 



mediated through the Meta Agent, workflows can maintain goal-level visibility into the 
problem solving process.  This simplifies the knowledge representations required by 
individual agents and reduces the need for extensive preconditions on agent capabilities.  
Supporting the workflow agent is a workflow editor used to create workflow modules. 

Thus, in addition to support knowledge processing, the multi-modal approach makes 
knowledge representations more intuitive for non-logicians.  We believe this is a 
significant benefit, especially in contrast to knowledge representations which rely 
exclusively on description logics, markup languages, or some combination of the two, as 
is the case with the Resource Description Framework, as described in [7] and elsewhere. 

6 Reasoning in KNAML 

The Java implementation of KNAML supports subsumption, unification, and 
binding.  Subsumption uses existential conjunctive logic to establish the truth value of 
one graph based on the known value of another.  Graph and sub-graph unification 
supports discovery by indicating how one graph is subsumed by another.  Binding is used 
for joining one graph with another.  The binding operation also supports backtracking.    

We have chosen to implement KNAML using Java.  This commitment is consistent 
with our general ground-rule that our development be portable, practical and accessible.  
Implementing unification in Java has required that subsumption, unification, and binding 
be addressed explicitly, whereas, in a logic programming language such as Prolog, these 
capabilities might have been left to fend for themselves.  Here we discuss some of the 
issues associated with defining and implementing the KNAML reasoning capability. 

6.1 Subsumption 

Subsumption is used for graph comparison.  For example, it may be used to compare 
a possible solution to a goal.  If the goal can subsume the possible solution, then the 
possible solution is, in fact, a solution.  This technique has been used in the Meta Agent to 
check a new goal against the context, to see if the solution is already known.  
Subsumption is a very specific test for similarity in two conceptual structures.  A 
conceptual structure p is said to subsume the structure q if the following conditions hold:  

 
1. If p and q are concepts, then p subsumes q if the type of p subsumes 

the type of q and the referent of p subsumes the referent of q. 
a. The type of p subsumes the type of q if the former is 

unspecified or if the two are identical. 
b. The referent of p subsumes the referent of q if any of the 

following are true: 
i. The referent of p is unspecified. 

ii. The referents of p and q are identical primitives. 



iii. The referents of p and q are subsumable plurals.1 
iv. The referents of p and q are subsumable graphs. 

2. If p and q are relations, then p subsumes q if the type of p is identical 
to the type of q and the arcs of p subsume the arcs of q.  The arcs of p 
subsume the arcs of q if all of the following are true: 

a. The number of arcs in p is equal to the number of arcs is q. 
b. There is a one-to-one match from the arc labels in p to the 

arc labels in q. 
c. The concept at the end of each arc with a given label in p 

subsumes the concept at the end of the arc with the same 
label in q. 

3. If p and q are graphs, then p subsumes q if one of the following 
conditions hold: 

a. The content of p is unspecified. 
b. Both p and q are empty. 
c. p and q are non-empty, and for every structure in p, there is 

a corresponding structure in q which the structure in p 
subsumes.  

6.2 Unification 

Unification supports discovery by producing a new graph which shows how one 
graph is subsumed by another.  In the Prolog programming language, both 
unification and subsumption lend themselves to backtracking.  For example, the 
matching of graphs is not order dependent, so an attempt may begin in one order 
until it fails, then another order is attempted.  However, there is no backtracking in 
Java—once an object is changed, it is changed.  Therefore the Java implementation 
of unification does not change the arguments being unified, but produces a third, 
unified argument.  If at any point during the unification of p and q to produce r, 
some substructures p’ and q’ are being unified in an attempt to produce r’ and the 
attempt succeeds, r’ can be added to r. But if it fails, any structures accumulated 
into r’ can be discarded, and any other appropriate attempt can be made. 

Interestingly, when p is unified with q to produce r, it would seem that r would be 
identical to q.  We might draw this conclusion from a cursory reading of the rules for 
subsumption, which say that p is subsumes q if p is identical to q, or, in some specific 
instances, if p is unspecified.  In the instances in which p and q are identical, r will 
have the same value as p and q, and so, obviously, it will have the same value as q.  In 
the instances where p is unspecified, q may be specified or unspecified, but in either case, 
r will have the value of q.  So, in all cases, r will have the same type and structure as q.  
What unification allows r to inherit from p is indexicals. 

                                                           
1 The definition for subsumption of plurals is not given here, but it is essentially the same as 

subsumption of graphs. 



Consider the case of an agent that can convert from degrees Fahrenheit to degrees 
centigrade.  To make the agent capability declaration simple, let us say that the agent can 
convert both directions, and also can check a given pair of numbers to see if they are 
paired by the conversion process (that is, that the conversion of one would result in the 
other).  The first of the following three propositional functions represents this capability, 
the second represents a goal for the conversion of 32 degrees Fahrenheit to centigrade, 
and the final propositional function represents the unification of the two: 

[ 
     [PropositionalFunction:#p[ 
          (Convert) 
               +-degreeF-->[#theFarValue] 
               +-degreeC-->[#theCentValue] 
     ]] 
     [PropositionalFunction:#q[ 
          (Convert) 
               +-degreeF-->["32"] 
               +-degreeC-->[] 
     ]] 
     [PropositionalFunction:#r[ 
          (Convert) 
               +-degreeF-->[#theFarValue"32"] 
               +-degreeC-->[#theCentValue] 
     ]] 
] 

In keeping with the earlier discussion, these are labeled “#p”, “#q”, and “#r”, 
respectively.  Notice that unification takes the values from q, the goal, which is supplied 
by the system, but retains the indexicals from p, the capability, which was supplied by the 
agent.  This allows the agent to use the indexicals to quickly locate important concepts in 
the goal, even though unification may have a different form from the original capability.  
Granted, it would not be difficult to locate any concept in this example.  Actual 
capabilities are generally not quite so simple. 

 
6.2.1 Unspecified graphs.   A unique requirement that has emerged in our use of 
KNAML is the need to be able to work with unspecified graphs.  The KNAML code 
has for some time been aware of “null” graphs, graphs which have not yet had their 
element vector set.  In various places, the code attempts to treat these graphs the 
same as empty graphs.  The concept of unspecified graphs is borrowed from plurals, 
where there is both the empty plural “{}” and the unspecified plural “{*}”.  Sowa 
[1, 8] does not include this notion in his definition of graphs, and is silent on the 
whole idea of propositional functions.  Further, if graphs can be made to be a true 
superset of functionality to plurals (and why should they not?) then plurals would be 
redundant, and could be replaced by sequences.  Sequences are similar to plurals, 
but are ordered.  These could be important, for example, when we wish to send a list 
of options to the user, and we wish those options to be presented to the user in the 
same order they were sent. 



6.2.2 Unification by Sub-graph.  Unification by sub-graph is important as a 
vehicle for discovery and a test of truth.  What is true for a graph should also be true 
for a sub-graph.  For example, consider a goal p formed from the question, “Who is 
going to Boston and Chicago?”  The proposition q, presumably from context, shows 
that it is known that Bob is going to Baltimore, Boston, Chicago, and Washington: 
    [PropositionalFunction:#p [ 
          (Going) 
               +-traveler-->[#theTraveler] 
               +-destination-->[[ 
                    ["Boston"] 
                    ["Chicago"] 
               ]] 
     ]] 
     [Proposition:#q [ 
          (Going) 
               +-traveler-->["Bob"] 
               +-destination-->[[ 
                    ["Baltimore"] 
                    ["Boston"] 
                    ["Chicago"] 
                    ["Washington"] 
               ]] 
     ]] 

Obviously, if Bob is going to Baltimore, Boston, Chicago and Washington, then Bob 
is going to Boston and Chicago, and p should unify with q, as shown here in r: 
     [Proposition:#r [ 
          (Going) 
               +-traveler-->[#theTraveler"Bob"] 
               +-destination-->[[ 
                    ["Baltimore"] 
                    ["Boston"] 
                    ["Chicago"] 
                    ["Washington"] 
               ]] 
     ]] 

6.3 Binding 

Because unification does not affect p or q, it is very useful and relatively simple to 
implement.  However, there are times when its usefulness is limited for this very 
reason.  We have found we need an operation where p is “bound” to q, where the 
process of binding is like unification, except that the result, rather than being 
directed to a new structure r, is directed back into p.   An example of this is found 
in the behavior of the workflow agent. 



Consider a section of a workflow that monitors the temperature of some piece of 
equipment.  As a failsafe, this section of the workflow takes two different temperature 
readings, one in Fahrenheit and one in centigrade, and compares the two to see if they 
agree.  Presumably, if they do not agree, the workflow would generate some alarm, but 
we will concern ourselves only with the states in the workflow which take the two 
readings and compare them.  Here are the goals associated with the states of interest: 

[ 
     [PropositionalFunction:#goal1 [ 
          [Sensor:#theSensor[ 
               (Property) 
                    +-aValue-->[#degreesF] 
                    +-aName-->["DegreesFahrenheit"] 
                    +-aConcept-->[#theSensor] 
          ]] 
     ]] 
     [PropositionalFunction:#goal2 [ 
          [Sensor:#theSensor[ 
               (Property) 
                    +-aValue-->[#degreesC] 
                    +-aName-->["DegreesCentigrade"] 
                    +-aConcept-->[#theSensor] 
          ]] 
     ]] 
     [PropositionalFunction:#goal3 [ 
          (Convert) 
               +-degreesF-->[#degreesF] 
               +-degreesC-->[#degreesC] 
     ]] 

] 

Note that the goals are joined.  That is, the third goal shares concepts with the first 
two.  When the third goal is executed, it needs the values returned from the execution of 
the first two goals.  The workflow agent is an abstract agent, and knows nothing about 
any particular domain, so it certainly will not know that it needs to obtain these values for 
this particular case.  The agent could be implemented to unify the goal with the result, 
then search future goals for indexicals found in the unified result, copying the value from 
the unified result to those goals, but this would be a messy process. 

If, instead, the agent would, after execution of each goal, bind the goal with the 
result, future goals which are joined to the goal would automatically be changed.  For 
example, if the Fahrenheit reading were 32, after the execution of the first goal and the 
binding of the goal with the result, the concept with the indexical “degreesF” would be 
bound to the value “32”.  Similarly, if the reading for degrees centigrade were “0”, after 
the execution of the second goal and the binding of the goal with the result, the concept 
with indexical “degreesC” would be bound to “0”.  This would set the third goal up to test 
the conversion of 32 degrees Fahrenheit to 0 degrees centigrade, which is exactly what 
we would want. 

 



6.3.1 Binding and Subsumption.   Since binding is destructive, it is useful to 
know in advance if it will succeed.  Although it might seem that subsumption could 
be used as an indicator of success, there are problems with such an approach.  
Binding, like unification and subsumption, is not order dependent.  The algorithm 
must attempt to find an order in which the graphs will bind.  The subsumption and 
unification algorithms can simply try progressive orders until one succeeds, or until 
all have failed.  Unlike subsumption and unification, binding changes the graph 
while in the process of trying progressive orders.  This means that binding may not 
succeed, even when subsumable order has been found.  Thus we have found it 
necessary to implement backtracking for binding. 

7 Conclusion 

In this paper we have described KNAML and its use in the KnoWeb multi-agent 
architecture.  KNAML supports knowledge capture and agent specialization by 
implementing an extensible set of modalities, such as workflows, rules, decision 
trees, and graphs.  This is accomplished by using an ontological specification for 
each modality.  Each modality is accompanied by a corresponding editor that 
enables the user to create integrated knowledge projects, consisting of a set of multi-
modal knowledge modules defined to address an anticipated range of problems 
using a multi-agent architecture.  At the storage and transmission level, KNAML is 
represented as XML.  KNAML is being used in a variety of KnoWeb applications 
now under development.  Workflows and graph editors are now in use, and 
additional editors are in development. 

The KnoWeb architecture integrates a variety of agent capabilities.  These include 
knowledge bases, databases, UML workflows, and sensors.  The Java implementation of 
KNAML supports subsumption, unification, and binding.  Subsumption uses existential 
conjunctive logic to establish truth value of one graph based on the known value of 
another.  Graph and sub-graph unification supports discovery by indicating how one 
graph is subsumed by another.  Binding is used for joining graphs to produce knowledge 
synthesis.  The binding operation also supports backtracking.  This is necessary to assure 
that graphs are recoverable in the event of binding failure.  The result is a simple but 
highly expressive language for representing knowledge for performing automated 
reasoning in a distributed environment. 
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